Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier-Stokes equations (RANS) versus large-eddy simulation (LES)
نویسندگان
چکیده
[1] In this paper we consider the problem of modeling a turbulent pulsating boundary layer over ripples. We compare the results of two modeling strategies, Wilcox’s k w Reynolds-Averaged Navier-Stokes equations (RANS) and large-eddy simulation (LES) employing the Lagrangian dynamic eddy viscosity model. The geometry and parameters employed are relevant to nearshore oceanic flows, and the results are discussed in relation to the problem of sediment transport. Generally, RANS and LES agree well only with regard to the vertical profiles of the streamwise component of the velocity. Large discrepancies were found in all the other quantities considered (e.g., vertical velocity, turbulent kinetic energy, and Reynolds stress). In particular, RANS severely underpredicted the magnitude of the Reynolds stress and overpredicted the amplitude of the oscillations in the vertical velocity. We also found that often the trends exhibited by RANS and LES when the frequency and/or amplitude of the driving conditions was varied were at odds. Since comparison with available experiments indicates that LES is able to accurately model this kind of flows, we conclude that the RANS model is not appropriate to model the suspension and transport of sediment under conditions similar to the ones presented in this study.
منابع مشابه
DES and Hybrid RANS/LES models for unsteady separated turbulent flow predictions
This paper proposes two DES (Detached Eddy Simulation) model and one hybrid RANS (Reynolds Averaged Navier-Stokes)/ LES (Large Eddy Simulation) model for the simulations of unsteady separated turbulent flows. The two-equation k-ε based models are implemented in a full 3-D Navier Stokes solver and simulations are carried out using a 3 order Roe scheme. The predictions of the models are compared ...
متن کاملLarge Eddy / Reynolds-Averaged Navier-Stokes Simulations of CUBRC Base Heating Experiments
ven with great advances in computational techniques and computing power during recent decades, the modeling of unsteady separated flows, such as those encountered in the wake of a re-entry vehicle, continues to be one of the most challenging problems in CFD. Of most interest to the aerothermodynamics community is accurately predicting transient heating loads on the base of a blunt body, which w...
متن کاملNumerical Analysis of Turbulent Rayleigh-bénard Convection on the Base of the Large Eddy Simulation Technique
Nowadays there are wide possibilities to perform numerical studies of turbulent natural convection flows on the base of 3D unsteady formulations [1]. Direct Numerical Simulation (DNS) is the most attractive and reliable approach for getting a detailed knowledge on convection [2, 3]. However, DNS applications are practically limited by the case of simplified geometry and/or the Rayleigh numbers ...
متن کاملRandom Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling
A random flow generation (RFG) technique is presented, which can be used for initial/inlet boundary generation in LES (Large-Eddy-Simulations) or particle tracking in LES/RANS (Reynolds-Averaged Navier-Stokes) computations of turbulent flows. The technique is based on previous methods of synthesizing divergencefree vector fields from a sample of Fourier harmonics and allows to generate nonhomog...
متن کاملA Dual -‐ Mesh Framework for Turbulence Modeling : Application to Flow Around a Circular Cylinder
To overcome this difficulty, various hybrid LES/RANS approaches have been developed, where RANS (Reynolds-averaged Navier-Stokes) equations are solved in the near-wall region while LES is only conducted in the free-shear region away from the wall [Fröhlich and von Terzi 2008]. One of the methods to address this issue is a consistent framework for turbulence modeling, where the filtered and Reyn...
متن کامل